Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode.

نویسندگان

  • Daniel M Jenkins
  • Bilal Chami
  • Matthias Kreuzer
  • Gernot Presting
  • Anne M Alvarez
  • Bor Yann Liaw
چکیده

Mixed monolayers of electroactive hybridization probes on gold surfaces of a disposable electrode were investigated as a technology for simple, sensitive, selective, and rapid gene identification. Hybridization to the ferrocene-labeled hairpin probes reproducibly diminished cyclic redox currents, presumably due to a displacement of the label from the electrode. Observed peak current densities were roughly 1000x greater than those observed in previous studies, such that results could easily be interpreted without the use of algorithms to correct for background polarization currents. Probes were sensitive to hybridization with a number of oligonucleotide sequences with varying homology, but target oligonucleotides could be distinguished from competing nontarget sequences based on unique "melting" profiles from the probe. Detection limits were demonstrated down to nearly 100 fM, which may be low enough to identify certain genetic conditions or infections without amplification. This technology has rich potential for use in field devices for gene identification as well as in gene microarrays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization.

The sequence-specific detection of DNA hybridization has attracted considerable interest in numerous fields. Although traditional DNA biosensors have been widely explored due to their high sensitivity, it is still challenging to develop a low-cost, portable, disposable, fast, and easy-to-use DNA detection method for public use at home or in the field. To address these challenges, herein, we rep...

متن کامل

Detection of femtomolar level osteosarcoma-related gene via a chronocoulometric DNA biosensor based on nanostructure gold electrode

In this paper, a sensitive chronocoulometric deoxyribonucleic acid (DNA) biosensor based on a nanostructure gold electrode was fabricated for detection of the femtomolar level survivin gene which was correlated with osteosarcoma by using hexaamine-ruthenium III complexes, [Ru(NH(3))(6)](3+), as the electrochemical indicator. The effect of different frequencies on the real surface area of the na...

متن کامل

Designing a Label Free Aptasensor for Detection of Methamphetamine

A label-free electrochemical nucleic acid aptasensor for the detection of methamphetamine (MA) by the immobilization of thiolated self-assembled DNA sequences on a gold nanoparticles-chitosan modified electrode is constructed. When MA was complexed specifically to the aptamer, the configuration of the nucleic acid aptamer switched to a locked structure and the interface of the biosensor changed...

متن کامل

دورگه‌سازی در محل؛ اصول و کاربردها : مقاله مروری

In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...

متن کامل

Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex.

We report a signal-on, electronic DNA (E-DNA) sensor that is label-free and achieves a subpicomolar detection limit. The sensor, which is based on a target-induced strand displacement mechanism, is composed of a "capture probe" attached by its 5' terminus to a gold electrode and a 5' methylene blue-modified "signaling probe" that is complementary at both its 3' and 5' termini to the capture pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 78 7  شماره 

صفحات  -

تاریخ انتشار 2006